

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

УТВЕРЖДАЮ

Зам. директора по учебно-методической работе филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске

В.В. Рожков « 29 » 08 20 17 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЭВМ И ПЕРИФЕРИЙНЫЕ УСТРОЙСТВА

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

Направление подготовки: <u>09.03.01</u>. «Информатика и вычислительная техника»

Профиль: «Вычислительные машины, комплексы, системы и сети»

Уровень высшего образования: бакалавриат

Нормативный срок обучения: 5 лет

Форма обучения: заочная

Год набора: 2017

Смоленск

Программа составлена с учетом ФГОС ВО по направлению подготовки $\underline{09.03.01}$ «Информатика и вычислительная техника», утвержденного приказом Минобрнауки России от «12» января 2016 г. № 5.

программу составил:
Jul
Канд. техн. наук, доц
Программа обсуждена и одобрена на заседании кафедры «Вычислительной техники»
« <u>28</u> » <u>июня 2017</u> г., протокол № <u>10</u>
Заведующий кафедрой «Вычислительной техники»:
« <u>03</u> » <u>июля</u> <u>2017</u> г.
РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов.
Ответственный в филиале по работе с ЛОВЗ и инвалидами
EByefu
подпись Зуева Е.В.
« <u>03</u> » июля <u>2017</u> г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является подготовка обучающихся к решению задач профессиональной деятельности в области организации вычислительных систем по направлению подготовки 09.03.01 «Информатика и вычислительная техника» (профиль подготовки: «Вычислительные машины, комплексы, системы и сети») посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС и установленных программой бакалавриата на основе профессиональных стандартов, в части представленных ниже знаний, умений и навыков.

Задачи дисциплины: изучить понятийный аппарат дисциплины, основные теоретические положения и методы организации архитектуры вычислительных систем, особенностей ее функционирования, как единого целого, состоящего из программно аппаратных средств, представления о том, как работает процессор, память и периферийные устройства, понимания методов и способов достижения высокой производительности за счет реализации конвейерной и параллельной работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина относится к базовой части Б1 базового цикла образовательной программы подготовки бакалавров по программе "Вычислительные машины, комплексы, системы и сети" направления 09.03.01 "Информатика и вычислительная техника".

Данная дисциплина является первичной в рамках траектории формирования компетенций ОПК-1, ОПК4:

- Программирование (ОПК-1);
- Операционные системы (ОПК-1, ОПК-4);
- Технологии программирования (ОПК-1);
- Сети и телекоммуникации (ОПК-4);
- Сетевые технологии (ОПК-4);
- Защита информации (ОПК-1).

Также дисциплина является фундаментом для следующих практик и ГИА:

Технологическая практика (ОПК-1, ОПК-4);

Преддипломная практика (ОПК-1);

Подготовка к защите и защита выпускной квалификационной работы.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина направлена на формирование следующих общекультурных и профессиональных компетенций:

Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компет	генция	Индикаторы достижения ком- петенций	Результаты обучения						
ОПК-1.	Способен	ИОПК-1.1 Способен применять	Знает:						
применять	есте-	знания в области архитектуры	- вопросы построения и особенно-						

Компетенция	Индикаторы достижения ком-	Результаты обучения
	петенций	
ственнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	вычислительных систем для их разработки на аппаратном уровне. ИОПК-1.2 Способен применять знания в области архитектуры вычислительных систем для разработки программного обеспечения	сти различных архитектур вычислительных систем уровень архитектуры системы команд Умеет: - работать с технической документацией на узлы и устройства вычислительных систем писать программы на ассемблере и интегрировать их в программное обеспечение написанное на языках высокого уровня. Владеет: - навыками обработки и оценики результатов тестирования на предмет правильности функционирования и его эффективности.
ОПК-4. Способен участвовать в разработке стандартов, норм правил, а также технической документации, связанной с профессиональной деятельностью	ИОПК-1.1 . Разрабатывает структуру вычислительной системы в соответствии с требованиями решаемой задачи	Знает: - требования по оформлению описаний на вычислительные системы и отдельные их элементы Умеет: - оформлять описания на алгоритмы, программы и программные продукты Владеет: - навыками написания программ и сопроводительной к ним документации

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

Ne	Индекс	Наименование	Kypc 2					Kypc 3					Итого за курс																			
			Академических часов									Академич	еских часов									Академич	еских часов				3.e.					
			Контроль	Bearo	Контакт	Лек	Лаб	Пр	KPII	CP	Kompons	3.c	Контроль	Bearo	Контакт	Лек	Лаб	Пр	КРП	CP	Конроль	3.c	Контроль	Beero	Контакт	Лек	Льб	Пр	KPII	CP	Контроль	Beero
8	E1.E.09	ЭВМ и пери- ферийные устройства	3aO.	180	16	8	8			160	4	5	Экз., РГР	180	16	8	8			155	9	5	Экз, РГР	360	32	16	16			315	13	10

ОБОЗНАЧЕНИЯ:

Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

3а − зачет.

Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.

Содержание дисциплины:

	Наименование видов занятий и тематик, содержание								
	2 курс								
1	Лекционные занятия, количество - 4 по 2 часа.								
	1.1. Организация ЭВМ и систем. Основные характеристики. Области применения ЭВМ								
	различных классов. Классификация компьютеров по областям применения. Понят								
	«Архитектура» вычислительной системы								
	1.2 Иерархия памяти. Принципы организации основной памяти. Виртуальная память и оганизация защиты памяти. Электронная память. Классификация. Параметры.								
	1.3. Функционирование и структурная организация процессоров.								
	1.4. Понятие о многомашинных и многопроцессорных вычислительных системах.								
2	Лабораторные работы, количество - 2 по 4 часа.								
	2.1. Исследование оперативной памяти (4 ч.).								
	2.2. Система команд IA-32 (4 ч.).								
	3 курс								
3.	Лекционные занятия, количество – 4 по 2 часа								
	3.1. Классификация интерфейсов периферийных устройств. Интерфейсы параллельные и								
	последовательные. Интерфейсы системные и приборные								
	3.2. Устройства хранения информации.								
	3.3. Устройства вывода и ввода информации.								
	3.4. Сетевые технологии в организации работы и управления периферийных устройств.								
	Распределенные системы и системы реального времени.								
4.	Лабораторные работы, количество – 2 по 4 часа								
	4.1. Системные контроллеры.								
	4.2 Интерфейс АТА.								
5	Выполнение РГР «ЭВМ и периферийные устройства».								
	Выполнение индивидуального задания, предполагающего разработку и описание вычис-								
	лительного алгоритма, выполняющего проверку (тестирование) частей ЭВМ.								
	Примерная тематика:								
	• Алгоритм тестирования оперативной памяти ЭВМ (варианты по правилам доступа;								
	• Алгоритм тестирования кэш-памяти (варианты по правилам доступа;								
	• Алгоритм тестирования видеопамяти (варианты по правилам доступа;								
	• Алгоритм оценки быстродействия оперативной памяти (варианты по правилам доступа);								
	• Алгоритм оценки быстродействия кэш-команд (варианты по правилам доступа;								
	• Алгоритм оценки быстродействия кэш-данных 1-го уровня (варианты по правилам доступа;								
	 Алгоритм оценки быстродействия кэш-данных 2-го уровня (варианты по правилам доступа; 								
	 Алгоритм оценки быстродействия видеопамяти (варианты по правилам доступа; 								

№	Наименование видов занятий и тематик, содержание									
	• Алгоритм оценки быстродействия выполнения логических команд;									
	• Алгоритм оценки быстродействия выполнения команд целочисленной арифметики;									
	• Алгоритм оценки быстродействия выполнения команд расширенной арифметики;									
	• Алгоритм оценки работы конвейера при разрешении конфликтов по данным;									
	• Алгоритм оценки работы конвейера при разрешении конфликтов по управлению;									
	• Алгоритм оценки работы конвейера при разрешении структурных конфликтов;									
6	Самостоятельная работа студентов:									
	6.1. Подготовка к защите лабораторных работ.									
	6.2. Подготовка к практическим занятиям.									
	6.2. Самостоятельное изучение теоретических материалов по следующим вопросам.									
	Поколения ЭВМ.									
	Тестирование оперативной памяти.									
	Современные процессоры CISC, RISC.									
	Язык ассемблера IA-32.									
	Интерфейсы IDE/ATA/ATAPI, SATA, USB, VGA, HDMI.									
	Оптические накопители CD, DVD, Blu-ray.									
	Принтеры: матричные, термографические, лазерные, струйные, сублимационные, термо-									
	восковые.									
	Устройства отображения на основе ЭЛТ, ЖК, плазменных панелей, LED и OLED.									
	Законы Амдала, Густафсона, Сана-Ная, Карпа-Флетта.									
	Векторные ВС. Матричные ВС. Ассоциативные ВС. ВС с систолической архитектурой.									
	6.3. Выполнение РГР.									

Текущий контроль:

- проверка конспектов лекций и дополнительных теоретических материалов;
- проверка отчетов по лабораторным работам;
- защита лабораторных работ;
- консультации по выполнению РГР.

Результаты текущего контроля фиксируются с использованием трехбалльной системы (0, 1, 2) при проведении контрольных недель по графику филиала в течение семестра, а также учитываются преподавателем при осуществлении промежуточной аттестации по настоящей дисциплине.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Таблица - Образовательные технологии, используемые при реализации различных видов учебных занятий по дисциплине

№ п/п	Виды учебных занятий	Образовательные технологии
1	Лекции	Классическая (традиционная, информационная) лекция. Интерактивная лекция (лекция-визуализация). Интерактивная лекция (проблемная лекция). Лекция, составленная на основе результатов научных исследований, в том числе с учётом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей. Индивидуальные и групповые консультации по дисциплине.

№ п/п	Виды учебных занятий	Образовательные технологии
2	Лабораторная работа	Технология выполнения лабораторных заданий индивидуально. Технология проблемного обучения на основе анализа результатов лабораторной работы: индивидуальный опрос, представление студентом результатов лабораторной работы в форме отчета.
3	Консультации по РГР	Для оперативного индивидуального консультирования используются технологии взаимодействия со студентами в режимах связи «offline» и «online».
4	Самостоятельная работа студентов (внеаудиторная)	Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационнометодическим материалам по дисциплине).
5	Контроль (промежуточная аттестация)	2 курс. Устный опрос. 3 курс. Ответ по билету.

6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

К промежуточной аттестации студентов по дисциплине могут привлекаться представители работодателей, преподаватели последующих дисциплин, заведующие кафедрами.

Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

Формы промежуточной аттестации по настоящей дисциплине:

2-й курс – ЗаО.

3-й курс – РГР, Экзамен.

6.1. Оценочные средства текущего контроля успеваемости:

6.1.1. Вопросы для защиты лабораторных работ – 2-й курс.

Лабораторная работа «Исследование оперативной памяти».

- 1. Система памяти ЭВМ: состав, структура.
- 2. Классификация запоминающих устройств.
- 3. Иерархическая организация памяти ЭВМ.
- 4. Важнейшие параметры запоминающих устройств (ЗУ).
- 5. Параметры быстродействия: время считывания, время записи, время доступа.
- 6. Перечислите существующие типы интегральных схем (ИС) ЗУ.
- 7. Объясните принцип работы ИС ЗУ динамического типа.
- 8. Нарисуйте временные диаграммы работы ИС ДЗУ в режимах чтения, записи и регенерации.
- 9. Нарисуйте структурную схему накопителя на основе ИС ДЗУ.
- 10. Поясните страничный режим работы памяти.
- 11. Что такое память типа EDO DRAM?
- 12. Какие особенности работы имеет синхронная память?
- 13. Параметры синхронной памяти.
- 14. Память DDR DRAM.

- 15. Память Rambus.
- 16. Типы энергонезависимой электронной памяти.
- 17. Особенности работы и применения флэш-памяти.
- 18. Назовите основные параметры схем и модулей памяти.
- 19. Нарисуйте структуру блока памяти.

Объясните влияние частоты регенерации DRAM на производительность ПЭВМ. Чем определяется минимальная частота регенерации DRAM?

Лабораторная работа «Система команд IA-32».

- 1. Перечислить основные типы (группы) команд.
- 2. Перечислить и пояснит способы адресации, используемые процессорами архитектуры IA-32.
- 3. Форматы данных, используемые в архитектуре IA-32.
- 4. Объяснить состав и назначение регистров процессора архитектуры IA-32.
- 5. Особенности адресации при использовании различных регистров.
- 6. Уметь объяснять функционирование процессора при выполнении команд различных типов.7. Форматы команд процессора архитектуры IA-32
- 8. Время выполнения команд.
- 9. Конвейерное выполнение команд.
- 10. Конфликты конвейеров команд и их устранение.
- 11. Структура регистра признаков процессора IA-32
- 12. Ассемблер для ІВМ РС
- 13. Организация ассемблерных вставок в Паскале

Уметь рассчитывать время выполнения отдельных команд и их сочетаний по результатам измерений выполнения тестовой программы.

6.1.2. Вопросы для защиты лабораторных работ – 3-й курс.

Лабораторная работа «Системные контроллеры»

- 1. Какие интерфейсы используются для подключения клавиатуры?
- 2. USB клавиатура это *хаб* или *функция*?
- 3. С какой скоростью могут читаться данные из клавиатуры по каналу USB?
- 4. Чем отличается интерфейс клавиатуры XT от AT?
- 5. Какие сигналы имеет электрический интерфейс клавиатуры?
- 6. Нарисуйте временные диаграммы последовательного интерфейса клавиатуры?
- 7. Тип канала связи с клавиатурой: симплексный, дуплексный или полудуплексный?
- 8. Какую структуру имеет контроллер клавиатуры 8042?
- 9. Назначение регистров контроллера клавиатуры.
- 10. Как адресуется контроллер клавиатуры?
- 11. Перечислите команды управления клавиатурой.
- 12. Что такое скан-код клавиатуры?
- 13. Каким образом реализуется одновременное нажатие нескольких клавиш?
- 14. Как организована матрица клавиатуры?
- 15. Нарисуйте структуру клавиатуры.
- 16. Какие команды управления клавиатурой Вы знаете?
- 17. В каком диапазоне можно изменить скорость повторов кодов клавиатуры?
- 18. Напишите программу опроса клавиатуры.
- 19. Какое назначение имеют ячейки CMOS RTC?
- 20. Как обеспечивается доступ к ячейкам CMOS RTC?
- 21. Каково быстродействие ИС CMOS RTC?
- 22. В каком формате хранится информация о времени?
- 23. Какую структуру имеет системный таймер?
- 24. Как используются каналы системного таймера в IBM PC совместимом компьютере?
- 25. Как программируется системный таймер?

- 26. Как запрограммировать звуковой канал таймера на генерацию с определенной частотой?
- 27. Какой порт ввода-вывода, кроме портов таймера, используется для управления каналом формирования звука?
- 28. Как получить двухтональный сигнал в канале звука?
- 29. Рассчитайте значение кода, загружаемого в регистр счетчика канала, для одного значения частоты из диапазона $1 \ \kappa \Gamma \mu 5 \ \kappa \Gamma \mu$.
- 30. Напишите программы чтения и отображения RTC, CMOS.

Лабораторная работа «Интерфейс ATA».

- 31. Назначение и применение интерфейса АТА.
- 32. Параметры интерфейса АТА.
- 33. Место интерфейса АТА в структуре компьютера.
- 34. Нарисуйте структуру простейшего адаптера АТА.
- 35. Что такое хост-адаптер?
- 36. Сколько устройств можно подключить к одному адаптеру АТА, и как они адресуются?
- 37. Что такое «конфигурирование устройств ATA»?
- 38. Как адресуются ведущее (Master) и ведомое (Slave) устройства ATA?
- 39. Какие группы команд существуют в интерфейсе АТА?
- 40. Как подключить (выбрать) устройство АТА для его обслуживания?
- 41. Какие регистры должно иметь устройство АТА?
- 42. Опишите содержимое регистра состояния устройства АТА.
- 43. Зачем в устройствах АТА имеется альтернативный регистр состояния?
- 44. Как используется регистр номера устройства?
- 45. Какие разряды имеет регистр управления?
- 46. Какие ошибки индицирует регистр ошибок?
- 47. Что такое режимы РІО?
- 48. Объясните работу каналов АТА в режиме DMA.
- 49. С какой скоростью будет осуществляться обмен по каналам ATA в случае, когда к общей шине подключены «быстрое» и «медленное» устройства ATA?
- 50. Как используется блочный обмен в интерфейсе АТА?
- 51. Как используются прерывания в режимах обычного и блочного обменах АТА?
- 52. Какие имеются средства идентификации и управления свойствами устройств АТА?
- 53. Какую структуру имеет блок идентификации устройства АТА?
- 54. Что такое автоматический мониторинг внутренних параметров (S.M.A.R.T.), поддержка управления энергопотреблением?
- 55. Какие существуют состояния устройства АТА в режимах энергосбережения?
- 56. Как работает устройство АТА в различных режимах энергосбережения?
- 57. Что такое расширение интерфейса АТА АТАРІ?
- 58. Что такое АТАРІ-пакеты?
- 59. Как реализовать АТАРІ-команду
- 60. Как определить присутствие АТАРІ(СD) устройства?

61.

6.2. Оценочные средства для промежуточной аттестации – РГР

На проверку РГР представляется РГР в печатном виде, в обложке и переплетенная (сшитая). РГР обсуждается с преподавателем для определения уровня знаний, умений и понимания выполненной работы.

По итогам обсуждения студенту могут быть заданы вопросы, на которые необходимо получить ответы.

Оценка РГР определяется по совокупности материала представленного в РГР, данных пояснений и ответов на заданные вопросы.

6.3. Оценочные средства для промежуточной аттестации по лекционному курсу.

6.3.1. Примеры вопросов к зачету по дисциплине на 2-м курсе

- 1. Основные параметры и характеристики вычислительных систем
- 2. Классификация вычислительных средств и систем
- 3. Оценка эффективности вычислительных систем
- 4. Принципы организации системы памяти
- 5. Классификация и параметры ЗУ
- 6. Память с произвольным доступом. Структура
- 7. Память с произвольным доступом. Функционирование
- 8. Регенерация DRAM
- 9. DDR DRAM
- 10. КЭШ-память прямого отображения
- 11. КЭШ-память с ассоциативным доступом
- 12. Внешняя память. Параметры. Характеристики.
- 13. Структура накопителей на основе жестких магнитных дисков
- 14. Физическая и логическая структуры жестких магнитных дисков
- 15. Память на основе оптических дисков
- 16. Дисковые системы RAID.
- 17. Процессор. Классификация процессоров
- 18. Система команд процессора
- 19. Методы адресации
- 20. Форматы команд процессора
- 21. Структура процессора
- 22. Функционирование процессора
- 23. Конфликты конвейера процессора
- 24. Устранение конфликтов конвейера процессора
- 25. Обобщенная структура современного процессора
- 26. Структура регистров процессора IA-32 Pentium
- 27. Команды. Форматы команд процессора архитектуры IA-32
- 28. Многоядерная структура современных процессоров
- 29. Прерывания процессора
- 30. Прямой доступ к памяти процессора?

6.3.2. Пример практических заданий, выносимых на зачет на 2-м курсе, для проверки практических умений и навыков студентов по дисциплине

- 1. Применение закона Амдала. Рассчитать неизвестный параметр по известным параметрам (число процессоров, процент распараллеливания кода, коэффициент ускорения).
- 2. Для конвейерного процессора рассчитать по известным параметрам: время выполнения заданного числа простых команд (в тактах или ns); количество ступеней конвейера; тактовую частоту

3. Рассчитать количество обращений к памяти при выполнении команд непосредственной, прямой или косвенной адресации для заданного типа интерфейса.

6.3.3. Примеры вопросов к экзамену по дисциплине на 3-м курсе

- 1. Программно-аппаратные средства сопряжения ПУ с устройствами ВС.
- 2. Прерывания.
- 3. Шины и интерфейсы ПУ.
- 4. Шина РСІ.
- 5. Шина AGP.
- 6. Шина SCSI.
- 7. НЖМД.
- 8. Накопители на оптических дисках.
- 9. Классификация принтеров.
- 10. Параметры принтеров.
- 11. Матричные принтеры.
- 12. Струйные принтеры.
- 13. Лазерные принтеры.
- 14. Термографические принтеры.
- 15. Сублимационные принтеры.
- 16. Программное обеспечение принтеров.
- 17. Классификация устройств, предназначенных для ввода изображений.
- 18. Матрицы ПЗС.
- 19. Цветные ПЗС камеры.
- 20. Сканеры. Структура.
- 21. Сканеры. Параметры.
- 22. Лазерные системы считывания.
- 23. Классификация устройств отображения информации.
- 24. Параметры устройств отображения информации.
- 25. Устройства отображения на основе ЭЛТ. Структура.
- 26. Устройства отображения на основе ЭЛТ. Параметры.
- 27. Структура ЭЛТ.
- 28. Параметры ЭЛТ.
- 29. ЖКИ.
- 30. Газоразрядные панели.
- 31. Светодиодные индикаторы.
- 32. Устройства отображения проекционного типа.
- 33. Стереоизображение.
- 34. Клавиатура. Классификация.
- 35. Клавиатура с механическими клавишами.
- 36. Клавиатура с клавишами индукционного типа.
- 37. Клавиатура с клавишами емкостного типа.
- 38. Клавиатура с клавишами на основе «эффекта Холла».
- 39. Клавиатура сенсорного типа.
- 40. «Мыш» электромеханического типа.
- 41. «Мыш» оптическая.
- 42. Джойстик: организация и параметры.
- 43. Акустические устройства: электромагнитного, электростатического типов. Пьезоэлементы.
- 44. Микрофоны.
- 45. Синтез звука методами тональных генераторов.
- 46. Табличный синтез звука.

6.3.4. Пример практических заданий, выносимых на экзамен на 3-м курсе, для проверки практических умений и навыков студентов по дисциплине

- 1. Рассчитать время передачи блока данных для определенного типа интерфейса.
- 2. Составить алгоритм вывода форматированной информации на печатающее устройство.
- 3. Для представленного образца устройства отображения измерить и рассчитать угол обзора изображения..

В филиале используется система с традиционной шкалой оценок – "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", "зачтено", "не зачтено" (далее - пятибалльная система).

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 года № И-23).

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«отлично»/	Выставляется обучающемуся, обнаружившему всестороннее, систематическое и
«зачтено	глубокое знание материалов изученной дисциплины, умение свободно выполнять
(отлично)»/	задания, предусмотренные программой, усвоивший основную и знакомый с до-
«зачтено»	полнительной литературой, рекомендованной рабочей программой дисциплины;
	проявившему творческие способности в понимании, изложении и использовании
	материалов изученной дисциплины, безупречно ответившему не только на во-
	просы билета, но и на дополнительные вопросы в рамках рабочей программы
	дисциплины, правильно выполнившему практическое задание. Оценка по дисци-
	плине выставляются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «эта-
,	лонный».
«хорошо»/	Выставляется обучающемуся, обнаружившему полное знание материала изучен-
«зачтено	ной дисциплины, успешно выполняющему предусмотренные задания, усвоивше-
(хорошо)»/	му основную литературу, рекомендованную рабочей программой дисциплины;
«зачтено»	показавшему систематический характер знаний по дисциплине, ответившему на
	все вопросы билета, правильно выполнивший практическое задание, но допу-
	стивший при этом непринципиальные ошибки. Оценка по дисциплине выставля-
	ются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «продвинутый».
«удовлетво-	Выставляется обучающемуся, обнаружившему знание материала изученной дис-
рительно»/	циплины в объеме, необходимом для дальнейшей учебы и предстоящей работы
«зачтено	по профессии, справляющемуся с выполнением заданий, знакомому с основной
(удовлетво-	литературой, рекомендованной рабочей программой дисциплины; допустившему
рительно)»/	погрешность в ответе на теоретические вопросы и/или при выполнении практи-
«зачтено»	ческих заданий, но обладающему необходимыми знаниями для их устранения
	под руководством преподавателя, либо неправильно выполнившему практиче-
	ское задание, но по указанию преподавателя выполнившему другие практические
	задания из того же раздела дисциплины.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «пороговый».
//HOMHODHO	новыи». Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-
«неудовле-	рыставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
творитель-	новного материала изученной дисциплины, допустившему принципиальные
но»/ не за-	ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-
чтено	нительные вопросы и неправильно выполнившему практическое задание (непра-
	вильное выполнение только практического задания не является однозначной
	причиной для выставления оценки «неудовлетворительно»). Как правило, оценка
	«неудовлетворительно ставится студентам, которые не могут продолжить обуче-
	ние по образовательной программе без дополнительных занятий по соответству-
	ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом
	результатов текущего контроля.
	Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-
	рованы.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебное и учебно-лабораторное оборудование

Для проведения лекционных занятий используется учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная специализированной мебелью; доской аудиторной; демонстрационным оборудованием: персональным компьютером (ноутбуком); переносным (стационарным) проектором.

Для проведения занятий лабораторного типа используется учебная аудитория для лабораторных работ, выполняемых в компьютерном классе, оснащенная специализированной мебелью; доской аудиторной; персональными компьютерами, связанными локальной вычислительной сетью с подключением к сети Интернет и доступом в ЭИОС филиала.

Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное специализированной мебелью; доской аудиторной; персональным компьютерами с подключением к сети Интернет и доступом в ЭИОС филиала.

Программное обеспечение

При проведении лекционных занятий предусматривается использование пакета Microsoft Office (система для подготовки и проведения презентаций Microsoft Power Point).

При проведении лабораторных работ студентами предусматривается использование компилятора C++ и текстового редактора Microsoft Word для оформления отчетов.

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;

- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
 - зачёт проводится в устной форме или выполняется в письменной форме на компьютере.

для глухих и слабослышащих:

- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- зачёт проводится в письменной форме на компьютере; возможно проведение в форме тестирования.

для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- зачёт проводится в устной форме или выполняется в письменной форме на компьютере;
- используется специальная учебная аудитория для лиц с ЛОВЗ ауд. 106 главного учебного корпуса по адресу 214013, г. Смоленск, Энергетический пр-д, д.1, здание энергетического института (основной корпус).

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены филиалом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература.

- 1. Организация ЭВМ и систем: Учебник для вузов / Б.Я. Цилькер, С.А. Орлов. 2-е изд. СПб.: Питер, 2011. 688 с.
- 2. Аблязов Р.З. Программирование на ассемблере на платформе x86-64. Пресс. 2011. -304 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1273
- 3. Полячков А.В., Панкратова Е.А. Свириденков К.И. Методические указания к лабораторным работам по курсу "ЭВМ" Смоленск 2014. 24 с.
- 4. Древс, Юрий Георгиевич. Организация ЭВМ и вычислительных систем : учеб. для вузов / Ю. Г. Древс .— М. : Высшая школа, 2006 .— 500, [2] с. : ил. ISBN 5-06-004868-3 : 654.50.
- 5. Авдеев В.А. Периферийные устройства: интерфейсы, схемотехника, программирование. -.: ДМК Пресс, 2009. 848 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1087/
- 6. Полячков А.В., Тихонов В.А. Методические указания к лабораторным работам по курсу "Периферийные устройства" Смоленск: филиал ГОУВПО «МЭИ» ТУ) в г. Смоленске, 2006. 16 с.

б) дополнительная литература

- 1. Организация ЭВМ. 5-е изд./ К. Хамахер, З. Вранешич, С. Заки. СПб.: Питер, 2003. 848 с.
- 2. Гук М.Ю: Аппаратные средства IBM РС. 3-е изд. СПб.: Питер, 2006. 1072 с.
- 3. Горнец, Николай Николаевич. Организация ЭВМ и систем: учеб. пособие для вузов по спец. 230100 "Информатика и вычислительная техника" / Н. Н. Горнец, А. Г. Рощин, В. В. Соломенцев. М.: Академия, 2006. 315, [1] с.: ил. (Высшее профессиональное образование).
- 4. **Гук, Михаил**. Аппаратные средства IBM PC : энциклопедия / М. Гук .— 3-е изд., [доп.] .— СПб. : Питер, 2008 .— 1072с. : ил (2 шт)
- 5. Грызлов В.И. Грызлова Т.П. Турбо Паскаль 7.0 ДМК Пресс. 2006. -400 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1217
- 6. Ан.П. Сопряжение ПК с внешними устройствами: Пер. с англ. М.: ДМК Пресс. 320 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1086/
- 7. Троицкий Ю.В., Полячков А.В., Зайцев О.В, Учебное пособие по курсам "Периферийные устройства", Средства отображения информации". Смоленск: СФМЭИ, 2001. 70 с
- 8. 2. Организация ЭВМ. 5-е изд./ К. Хамахер, 3. Вранешич, С. Заки. СПб.: Питер, 2003. 848 с.
- 9. Мандел.Т. Разработка пользовательского интерфейса: Пер. с англ. М.: ДМК Пресс. 416 с., В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1227/
- 10. Гук М.Ю: Аппаратные средства IBM РС. 3-е изд. СПб.: Питер, 2006. 1072 с.

Список авторских методических разработок.

Методическое обеспечение по дисциплине «Аппаратная реализация алгоритмов» включает также следующие авторские разработки:

1. Полячков А.В., Панкратова Е.А. Свириденков К.И. Методические указания к лабораторным работам по курсу "ЭВМ" Смоленск 2014. 24 с.

Направление подготовки 09.03.01 «Информатика и вычислительная техника» Профиль подготовки «Вычислительные машины, комплексы, системы и сети» РПД Б1.Б.09 «ЭВМ и периферийные устройства»

- 2. Полячков А.В., Тихонов В.А. Методические указания к лабораторным работам по курсу "Периферийные устройства" Смоленск: филиал ГОУВПО «МЭИ» ТУ) в г. Смоленске, 2006. 16 с.
 - комплект лекций в формате мультимедийных презентаций;
 Учебно-методические материалы размещены на ресурсах кафедры.

	ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ											
Но- мер изме мене не- ния	изме ме- нен- ных	заме ме- нен- ных	страни но- вых	анну нули лиро ро- ванн ых	Всего стра- ниц в доку- менте	Наименование и № документа, вводящего изменения	Подпись, Ф.И.О. внесшего изменения в данный экземпляр	Дата внесения из- менения в данный эк- земпляр	Дата введения из- менения			
1	2	3	4	5	6	7	8	9	10			